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Solvable optimal velocity models and asymptotic trajectory
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In the optimal velocity model proposed as a version of car following model, it has been found that a
congested flow is generated spontaneously from a homogeneous flow for a certain range of the traffic density.
A well-established congested flow obtained in a numerical simulation shows a remarkable repetitive property,
such that the velocity of a vehicle evolves exactly in the same way as that of its preceding one except with a
time delayT. This leads to a global pattern formation in time development of the vehicle’s motion, and gives
rise to a closed trajectory onDx-v ~headway-velocity! plane connecting congested and free flow points. To
obtain the closed trajectory analytically, we propose an approach to the pattern formation, which makes it
possible to reduce the coupled car following equations to a single difference-differential equation~Rondo
equation!. To demonstrate our approach, we employ a class of linear models which are exactly solvable. We
also introduce the concept of ‘‘asymptotic trajectory’’ to determineT andvB ~the backward velocity of the
pattern!, the global parameters associated with the vehicle’s collective motion in a congested flow, in terms of
parameters, such as the sensitivitya, which appeared in the original coupled equations.
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o
dy
ffi
ap

el

b
nd
on
g

n

.

-

Eq.
ay
of
a-

es
la-

ly
flow
ting

the
rt of
on-

ted

rn
y
-
he
jec-
he
im-
I. INTRODUCTION

Traffic flow is one of the most interesting phenomena
many-body systems which may be controlled by a basic
namical equation. Recent developments in the study of tra
flow has brought a renewed interest in microscopic
proaches, such as the optimal velocity model~OV model!
@1–3#, which is a new version of the car following mod
@4–6#, cellular automaton models@7–9#, coupled map lattice
models@10#, and the fluid dynamical models@11#. The OV-
model, among others, has especially attracted interest
cause it provides us with a possibility of unified understa
ing of both free and congested traffic flows from comm
basic dynamical equations. Unlike traditional car followin
models, it introduces optimal velocity functionV(Dx) as a
desirable velocity depending on headway distanceDx. The
basic equation of the OV model for a series of vehicles o
circuit of lengthL is

ẍn~ t !5a$V@Dxn~ t !#2 ẋn~ t !% n51,2, . . . ,N, ~1.1!

where xn denotes the position of thenth vehicle,
Dxn[xn212xn headway, andN the total vehicle number
The constant parametera is the sensitivity. A driver accel-
erates~or decelerates! his vehicle in proportion to the differ
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ence between his velocity and the optimal velocityV(Dx).
As easily noticed, a homogeneous flow is a solution to
~1.1!. In such a flow, vehicles have a common headw
L/N, which is the inverse of the vehicle density. Stability
homogeneous flows is analyzed within a linear approxim
tion @1,2#; it is stable for f5V8(L/N), f c and unstable for
f. f c . The critical value is found to bef c5a/2.
In order to demonstrate that the OV model describ

‘‘spontaneous generation of congestion,’’ numerical simu
tions were made using Eq.~1.1!. It was found that for
f, f c , i.e., if the density is above the critical value, a slight
perturbed homogeneous flow develops to a congested
after enough time. The congested flow consists of alterna
two distinct regions; congested regions~high density!, and
smoothly moving regions or free regions~low density!. In
this way the traffic congestion occurs spontaneously in
OV model. This phenomenon can be understood as a so
phase transition from a homogeneous flow state to a c
gested flow state@1,2#.

A remarkable feature of the well-established conges
flow is that the velocity of thenth vehicle ẋn has the same
time dependence as that of the preceding@(n21)th# vehicle,
except at a certain time delayT. It is also found that the
global pattern moves backward with a velocityvB . This kind
of behavior of the vehicles may be called ‘‘repetitive patte
formation.’’ It leads to formation of a closed trajector
~‘‘limit cycle’’ ! on anDx-v plane, along which representa
tive points for all the vehicles move one after another. T
convergence of the vehicle’s trajectories to a closed tra
tory signals the congestion in a traffic flow. Therefore, t
determination of the closed trajectory is one of the most
6519 © 1997 The American Physical Society
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FIG. 1. A result of the numerical simulation with 20 vehicles on a circuit with the circumferenceL540. The sensitivity and the OV
function are chosen asa51.0 andV(h)5tanh(h22)1tanh(2).~a! Trajectories of vehicles passing through a congested region.~b! The
‘‘limit cycle’’ on the Dx-v ~headway-velocity! plane. The cusp pointsC andF correspond to congested and free regions, respectiv
Representative points for vehicles move anticlockwise along this ‘‘limit cycle.’’ They run fast on curves connecting the two cusps
they stay around cusps for a while. The thin line shows the OV function.
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portant subjects to understand congested flows. However
has been done mostly in computer simulations. The purp
of the present paper is to obtain this closed trajectory dire
by an analytical method. Actually it has been found that,
the vicinity of the critical point for the congested flow, E
~1.1! can be reduced to the modified Korteweq-de Vr
equation by the dynamical reduction method@12#. In this
paper we propose an analytical approach to the pattern
mation, which may be applicable to any congested flow.

We argue that, once the repetitive pattern is formed,
coupled car following equations reduce to a sing
difference-differential equation~Rondo equation! for a uni-
versal function~Rondo function!. A Rondo function deter-
mines a closed trajectory on anDx-v plane. To make the
Rondo equation tractable, we have simplified our question
the following two points: firstly, we have assumed that O
functions are piecewise linear; secondly, we have conc
trated our attention on an asymptotic trajectory, which is
key concept to be explained in Sec. II. We would like
stress that our method does not lose its generality by ma
the above assumption on OV functions: an OV function to
obtained from real data may be approximated by a piecew
linear function.

With the above simplifications, we have solved the Ron
equation for each model and given an asymptotic trajec
on theDx-v plane. Our result clearly tells us that, once
OV function and the sensitivitya are given, an asymptotic
trajectory is uniquely determined; this then implies that
parametersT andvB for a collective motion of vehicles ar
given as a function ofa. Therefore, our approach provides
with a method to determinea dependence of the global pa
rametersT andvB .

This paper is organized as follows. Section II summari
the main results obtained from numerical simulations of
OV model, with emphasis on the pattern formation in a co
gested flow. The concept of an asymptotic trajectory is
plained in Sec. II. As will become clear in later sections,
asymptotic trajectory is a very important concept for und
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standing the OV model. We derive the difference-different
equation and present a general strategy on how to solve
Sec. III. This part summarizes the central idea of this pap
In order to demonstrate how the Rondo approach works,
analytically solve, in Sec. IV, some simple models wi
piecewise linear OV functions. Our first model has been
vestigated by Sugiyama and Yamada@13#. Here we solve
this model in the context of the Rondo approach. Althou
an asymptotic trajectory is very close to a real trajecto
observed in a computer simulation, it is not exactly the sa
as the latter. We describe some aspects of real trajecto
based on our knowledge of the asymptotic one in Sec.
Section VI is devoted to summary and discussions.

II. PATTERN FORMATION IN OV MODEL

Let us recollect what we have learned with the numeri
simulations of an OV model@1–3#. Suppose a simulation is
performed with a given OV function and a fixed sensitivi
a. After a congested flow is well established, typical featu
of the repetitive behavior can be observed in the followi
two figures.

Figures 1~a! and 1~b! show that vehicles move in alterna
ing regions of free and congested flows. It is recognized t
every vehicle behaves in the same manner as its prece
one with a certain time delayT: as a result, the congeste
region moves backward with the velocityvB . Once the lo-
cation of any vehicle, say, thenth vehicle, is given as a
function of t, we may reproduce the pattern in Fig. 1~a! by
plotting a series of functions shifted in time and position
T and vBT appropriately. Therefore, we expect that a co
gested flow may be completely determined by a function
t and global parametersT and vBT. The precise specifica
tions of our approach to this repetitive behavior will be e
plained in Sec. III.

Figure 1~b! clearly shows there exists a ‘‘limit cycle’’ on
the Dx-v plane, a closed curve with two cusps at poin
C(DxC ,vC) andF(DxF ,vF), both of which are on the OV
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function. At these cusp points, we findV8(Dx),a/2, which
means that homogeneous flows with such headways and
locities are linearly stable. Representative points for all v
hicles move on this ‘‘limit cycle’’ in an anticlockwise direc-
tion. It follows from the conservation of flow

vC1vB
DxC

5
vF1vB

DxF
5
1

T
, ~2.1!

that the straight line connectingC andF has the slopeT21

and intersects with the vertical axis at2vB . ~This relation is
an approximate one except for an asymptotic trajectory to
discussed below.!

In the rest of this section, we would like to explain th
concept of an asymptotic trajectory on theDx-v plane. Sup-
pose that a vehicle passes through two congested reg
different in size on a circuit. Then the representative po
moves on curves as shown in Fig. 2. Each trajectory may
form an actual cusp, rather it will form a round shaped t
Also we find that the larger the congested region, the shar
the shape of the tip: the minimum velocity of the vehicle
smaller for a longer congestion. It is rather easy to imag
that for a very short congestion the vehicle cannot decele
itself enough to reach the velocity appropriate for a long
congested region. If we plot minimum velocities for long
and longer congested regions, we would find a limiting val
for the minimum velocities. This value must be realized f
an infinitely long congested region. With a similar argume
we find the limiting value for maximum velocities corre
sponding to an infinitely long free region. We may imagin
the following extreme situation: a vehicle starting from a
infinitely long free ~congested! region goes toward an infi-
nitely long congested~free! region. The trajectory for this
limiting situation will be called a decelerating~an accelerat-
ing! asymptotic trajectory. Combining them we would find
closed curve with two real cusps on the OV function.

The duration for a vehicle to stay in a congested regi
would obviously get longer for a larger congested regio
For an asymptotic trajectory it becomes infinite. This does
to our linear analysis since the behavior of a vehicle is co

FIG. 2. Trajectories for a vehicle passing through two conges
regions different in size. The outer curve corresponds to the lar
congested region. The thin line is the OV function. Parameters
the same as those in Fig. 1.
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trolled by exponential functions in time. In Sec. V, we sh
see that exponential functions determine a curve near a c

III. RONDO APPROACH

We begin our description of the Rondo approach with t
basic assumptions.

~1! Velocities of thenth and (n21)th vehicles have ex-
actly the same time dependence if a certain time delayT is
taken into account,ẋn21(t)5 ẋn(t1T).

~2! The pattern of traffic flow moves backward with
constant velocityvB .

The above described properties are expressed as,

xn21~ t !5xn~ t1T!1vBT. ~3.1!

All the vehicle’s behavior is represented with a single u
versal functionF(t)[xn(t) ~this assumption bears som
similarities with the traveling wave ansat
@f(x,t)→ f (x2vt)# for the wave equation!,

xn2k~ t !5F~ t1kT!1kvBT. ~3.2!

With thenth vehicle’s headway given as

Dxn~ t !5F~ t1T!2F~ t !1vBT, ~3.3!

theN coupled car following Eq.~1.1! is reduced to a single
difference-differential equation forF(t),

1

a
F̈~ t !1Ḟ~ t !5V@F~ t1T!2F~ t !1vBT#. ~3.4!

In the following it will be called the Rondo equation.
In this paper, we will seek the Rondo functionF(t) for

the asymptotic trajectory~we will discuss more realistic situ
ations with finite congested regions in Sec. V!. Before study-
ing concrete models, let us consider its generic propert
Since the position and the velocity of vehicles are obviou
continuous in time,F(t) is a continuously differentiable
function.

An asymptotic trajectory connects the pointsF and C,
each of which corresponds to an infinitely long free or co
gested region~an approximately homogeneous flow! satisfy-
ing the stability condition mentioned in Sec. II. Therefo
F(t) should be homogeneous flows asymptotically in the
finite past and future:Ḟ(t)→ const as t→6`. An
asymptotic trajectory interpolates two stable solutions of E
~1.1!. In this senseF(t) may be regarded as a ‘‘kink solu
tion.’’

Like OV models studied in earlier papers, each mode
Sec. IV has an OV function which is symmetric with respe
to a point,S(DxS ,vS) ~the symmetry of an OV function is
absolutely not necessary to solve a system in the Rondo
proach. In Sec. VI, we discuss how to solve the Rondo eq
tion for a generic situation!. So we assume this property i
the following arguments and quote our result in Appendix
Two end points of an asymptotic trajectory,C(DxC ,vC) and
F(DxF ,vF), are symmetric with respect toS. Three points
C, F, andS are on a straight line with a slopeT21 and an

d
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intersection2vB . Note that once the slope is given, th
intersection is uniquely determined since pointSmust be on
the line.

As shown in Appendix A, accelerating and decelerat
asymptotic trajectories are symmetric with respect toS.
Therefore it is sufficient to study one of them; in the rest
this paper, we will take a decelerating asymptotic trajecto
Here we summarize conditions which should be satisfied
the functionF(t): ~1! F(t) and Ḟ(t) are continuous for any
t„F(t)PC1

…; ~2! vF5 limt→2`Ḟ(t) and vC5 limt→1`Ḟ(t);
~3! vF1vC52vS and DxF1DxC52DxS ,
where DxF5 limt→2`@F(t1T)2F(t)1vBT# and
DxC5 limt→1`@F(t1T)2F(t)1vBT#.

We would like to explain a way to solve the Rondo equ
tion, which contains an OV function and a sensitivitya, as
well asT andvB associated the pattern formation.~1! First
we give the parameterT. By drawing a straight line through
the point S with the slopeT21, we find the intersection
2vB and the pointsC and F. ~2! Now a is the only free
parameter of the Rondo equation. If we could solve the eq
tion, we would obtain a one-parameter family of~or
a-dependent! Rondo functions.~3! Among this family, the
right Rondo function is selected by requiring that it conne
the pointsC andF. This condition also determines a uniqu
value fora. Accordingly we find thea dependence ofT.

IV. PIECEWISE LINEAR FUNCTION MODELS

We consider here a class of models with piecewise lin
OV functions. The Rondo equation is now linearized for
regions ofDx, and therefore exactly solvable.

A. Step function model

The first model has the step function for the OV functio

V~Dx!5H 0 Dx,DxS ~region I!

V0 Dx.DxS ~region II!.
~4.1!

This OV model has been solved in Ref.@13#. Here we ex-
plain how this model can be solved in our Rondo approa
In this model, the Rondo equation is given by

1

a
F̈~ t !1Ḟ~ t !5V0u„F~ t1T!2F~ t !1vBT2DxS…,

~4.2!

whereu(x) is the Heaviside function.
In the motion corresponding to a decelerating asympt

trajectory, the representative point for a vehicle moves fr
region II into region I. Let us take the timet such that the
point moves into the region I att50, which implies
Dxn(0)5DxS .

The equation of motion is

1

a
F̈~ t !1Ḟ~ t !5HV0 ~ t,0!

0 ~ t.0!.
~4.3!

The general solutions for two regions are
g

f
.
y

-

a-

s

r
l

,

h.

ic

Ḟ~ t !5HV01C1e
2at ~ t<0!

C2e
2at ~ t>0!.

~4.4!

The integration constants are determined asC150 and
C25V0 from requirements thatḞ(t) be a continuous func-
tion and asymptotically constant fort→6`. The continuous
functionF(t) is

F~ t !5H V0t ~ t<0!

V0

a
~12e2at! ~ t>0!.

~4.5!

Here we choose the origin of position coordinate so t
F(0)50.

The function F(t), with its relation to the headway
Dxn(t)5F(t1T)2F(t)1vBT, completely determines a de
celerating asymptotic trajectory on theDx-v plane. From
condition ~3! in Sec. III, the asymptotic trajectory connec
symmetric points on the OV function. This gives us a co
dition Dxn(1`)1Dxn(2`)52DxS52Dxn(0),

vBT1~V01vB!T52FV0

a
~12e2aT!1vBTG . ~4.6!

This may be expressed as the transcendental equation
r5aT

e2r1 1
2r2150. ~4.7!

Since ther is found to be the constant~1.593 62 . . . !, we
obtain

aT5r51.593 62 . . . . ~4.8!

This gives us thea dependence ofT, which was first ob-
tained in Ref.@13#.

It is instructive to see a relation between the functi
F(t) and the decelerating trajectory depicted in Fig. 3. T
curves in Fig. 3~b! correspond to the (n21)th andnth vehi-
cle’s locations. Att50 thenth vehicle’s representative poin
moves into region I andF(t) is described by an exponentia
function. Before that time, the functionF(t) is linear in t.
The curve for the (n21)th vehicle changes from the linea
to the exponential behavior att52T. It is given via a par-
allel displacement by the vector (2T,vBT) from the curve
F(t). For the timet<2T, curves are two parallel straigh
lines, which implies the headway of thenth vehicle does not
change till that time from the infinite past. Thenth vehicle
has the constant velocityV0 for t,0. This tells us that the
nth vehicle is in the free region fort<2T, indicated by the
point F in Fig. 3~a!. It is also easy to observe that a
t52T the (n21)th vehicle starts to decelerate. As a res
the headway of thenth vehicle decreases; att50 it reaches
the valueDxS and thenth vehicle starts to decelerate itsel

In this model, the pointsF andC are both characterized
as points which are reached in the infinite future or past.
a traffic flow, we are describing a solitonlike solution co
necting half infinite vehicles, running with the velocityvF
and the headwayDxF , and another half infinite vehicles go
ing into the congested region associated with the pointC.
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FIG. 3. ~a! The OV function~thick line! and a decelerating asymptotic trajectory~thin line with arrows! for the step function model.~b!
The position functionsxn(t) andxn21(t) for the decelerating asymptotic trajectory.
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B. Single slope function model

In the step function model, theDx dependence of the
Rondo equation is too simple;T dependence is not explicit
So we would like to consider a slightly improved mode
whose OV function shown in Fig. 4 has a finite slope. Th
we call this model the single slope function model. The O
function is characterized by the following parameters:f the
slope;V0 the maximum velocity;DxS the headway for opti-
mal velocityV0/2. From the linear analysis in@1#, we know
that a homogeneous flow becomes unstable and a cong
flow is expected for 2f.a. This condition is assumed in ou
analysis here.

The OV function has sharp bends at

DxA5DxS2
V0

2 f
, ~4.9!

DxB5DxS1
V0

2 f
, ~4.10!

FIG. 4. The OV function for the single slope function mode
f is the gradient in region II. The function is symmetric with respe
to the point (DxS ,V0/2).
s

ted

which divideDx into three regions, I, II, and III, as indicate
in Fig. 4.

We would like to find a Rondo functionF(t) for a decel-
erating asymptotic trajectory, along which headway of a
hicle monotonically decreases fromDxF to DxC . We as-
sume it reachesDxB at t52t andDxA at t50. The Rondo
equation takes the form

1

a
F̈~ t !1Ḟ~ t !5H 0 ~ t>0!

f „F~ t1T!2F~ t !2d… ~2t<t<0!

V0 ~ t<2t!

,

~4.11!

subject to the conditions,

F~T!2F~0!1vBT5DxA , ~4.12!

F~2t1T!2F~2t!1vBT5DxB . ~4.13!

Here d5DxA2vBT. Note that the time2t is not a free
parameter. Rather, it should be determined from Eq.~4.13!
via solving the Rondo equation.

For regions I and III, the Rondo equation becomes
same as that in the step function model. Therefore, we ob

Ḟ~ t !5H const3e2at ~ for region I!

V0 ~ for region III!.
~4.14!

Our purpose in this subsection is to describe a method to
the Rondo function in region II which correctly interpolate
those in Eq.~4.14!. To this end, we may introduce a series
functions for each time interval

F~ t !55
F I~ t ! ~0<t !

F1~ t ! ~2T<t<0!

F2~ t ! ~22T<t<2T!

A A

F III ~ t ! ~ t<2t!.

~4.15!

t
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The first functionF I(t)[F0(t) and the last oneF III (t) are
for regions I and III, respectively.

Let us findF I(t) ~ for t>0). It follows from Eq.~4.14!
that

Ḟ I~ t !5u0e
2at, ~4.16!

F I~ t !5
u0
a

~12e2at!, ~4.17!

where we fix againF I(0)50. Thenth vehicle’s headway is
then given by

Dxn~ t !5F I~ t1T!1vBT2F I~ t !5
u0
a

~12e2aT!e2at1vBT.

~4.18!

Since the condition~4.12! determines the constantu0

u05a
DxA2vBT
12e2aT [

ad

12e2aT , ~4.19!

we find the Rondo function fort>0 to be

F I~ t !5
d

12e2aT ~12e2at!. ~4.20!

This leads to a linear relation between the velocity and
headway

ẋn5
a

12e2aT ~Dxn2vBT!. ~4.21!

In the t→` limit, we find that ẋn→0 andDxn→vBT.
Now we considerF1(t) ~ for 2T<t<0). In this time

interval, the Rondo equation forF1(t) is expressed as

1

a
F̈1~ t !1Ḟ1~ t !5 f „F0~ t1T!2F1~ t !2d…, ~4.22!

in terms of the Rondo function for the region
F I(t)[F0(t). By using the differential operator

D5
1

a f

d2

dt2
1
1

f

d

dt
11, ~4.23!

we may rewrite the above equation as

DF1~ t !5F0~ t1T!2d. ~4.24!

The general solution may be written as a sum of a partic
solution and the solution to the homogeneous equa
DF1

hom(t)50. It is easy to see thatF0(t1T)2d is a particu-
lar solution, since the functionF0(t)[F I(t) given in Eq.
~4.20! satisfies

DF0~ t !5F0~ t !. ~4.25!

The exponentsg for a homogeneous solution are

g52
a

2
6 i S a f2 a2

4 D 1/2[2
a

2
6 iv. ~4.26!
e

r
n

A general solution is given as

F1~ t !5F0~ t1T!2d1e2~a/2!t~Asinvt1Bcosvt !.
~4.27!

The constantsA and B are determined asA5ad/v and
B50, by the requirement thatF0(t) andF1(t) must be con-
tinuous up to the first derivative att50. Therefore,

F1~ t !5
d

12e2aT ~12e2a~ t1T!!2d1
ad

v
e2~a/2!tsinvt,

~4.28!

and the headway and the velocity for thenth vehicle is given
as

Dxn~ t !5F0~ t1T!2F1~ t !1vBT5DxA2
ad

v
e2~a/2!tsinvt,

ẋn~ t !5Ḟ1~ t !5
ad

eaT21
e2at

1
ad

v
e2~a/2!tS vcosvt2

a

2
sinvt D . ~4.29!

We would now like to give general formula forFk(t)
„for tPI k5@2kT,2(k21)T#… with k.1. Suppose that
Fk(t) for tPI k is known to us and we are trying to fin
Fk11(t) for tPI k11. Fk11(t) satisfies the second order lin
ear differential equation

DFk11~ t !5Fk~ t1T!2d, ~4.30!

with boundary conditions

Fk11~2kT!5Fk~2kT!,

Ḟk11~2kT!5Ḟk~2kT!, ~4.31!

while Fk(t) satisfies a similar equation

DFk~ t !5Fk21~ t1T!2d. ~4.32!

The functionFk(t) describes the behavior of thenth ve-
hicle only for tPI k . However we will find it useful to define
the function by the relation~4.32! even outside the interva
I k . The function used outside the interval will be denoted
F̃k(t). The difference of Eqs.~4.30! and ~4.32! gives us the
following equation fortPI k115@2(k11)T,2kT#:

D„Fk11~ t !2F̃k~ t !…5Fk~ t1T!2F̃k21~ t1T! ~k>1!.
~4.33!

From Eqs.~4.24! and ~4.25! we find

D„F1~ t !2F̃0~ t !…5F0~ t1T!2F̃0~ t !2d5d~e2at21!,
~4.34!

for tPI 15@2T,0#.
By using the functionGk(t) defined in the relation,

Fk11~ t !5F̃k~ t !1Gk11~ t1kT!, ~4.35!
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Eqs.~4.33! and~4.34! are rewritten into the following equa
tions for2T<t<0:

DGk11~ t !5Gk~ t ! ~k>1!, ~4.36!

DG1~ t !5d~e2at21![G0~ t !. ~4.37!

Note that G0(t) defined in Eq. ~4.37! satisfies
DG0(t)5G0(t). The conditions~4.31! becomeGk(0)50
andĠk(0)50 ~for k>1).

The Rondo functionF(t) for region II is given as a sum
of Gk(t),

F II~ t !5F0~ t !1 (
k>0

u~2t2kT!Gk11~ t1kT!, ~4.38!

for t.2t. In Appendix B we will give general solutions t
differential equations~4.36! and ~4.37!. G1(t) from the ap-
pendix,

G1~ t !5G0~ t !1
ad

v
e2~a/2!tsinvt5d~e2at21!

1
ad

v
e2~a/2!tsinvt, ~4.39!

is consistent with Eq.~4.28!. Similarly G2(t) is given as

G2~ t !5G1~ t !2
ad

v

2 f

4 f2a
e2~a/2!t$vtcosvt2sinvt%.

~4.40!

SoF2(t) for tPI 25@22T,2T# becomes

F2~ t !5F̃1~ t !1G2~ t1T!

5F̃1~ t !1d~e2a~ t1T!21!

1
ad

v
e2~a/2!~ t1T!sinv~ t1T!

2
ad

v

2 f

4 f2a
e2~a/2!~ t1T!$v~ t1T!cosv~ t1T!

2sinv~ t1T!%, ~4.41!

while the headway for thenth vehicle is

Dxn~ t !5DxA2
ad

v
e2~a/2!tsinvt1

ad

v

2 f

4 f2a
e2~a/2!~ t1T!

3$v~ t1T!cosv~ t1T!2sinv~ t1T!%. ~4.42!

The general formula in Appendix B may be used further
generateF3 ,F4 , . . . , needed to describe the trajectory
region II.

Let us consider region III. Att52t, the function~4.38!
for region II must be continuously connected toF III (t), in-
cluding their first derivatives. This condition yieldsF III (t)
for t<2t as

F III ~ t !5V0~ t1t!1F II~2t!. ~4.43!
The continuity condition for the first derivative requires al
that

Ḟ II~2t!5Ḟ III ~2t![V0 . ~4.44!

This completes our construction of an asymptotic trajecto
Now let us find thea dependence ofT for the present

model. The time2t may be determined by the conditio
~4.13!, F(2t1T)2F II(2t)1vBT5DxB ; then Eq.~4.44!
gives us a relation betweena andT. By using Eq.~4.38! for
F II(2t), concrete expressions of Eqs.~4.13! and~4.44! may
be obtained. For2T<2t, F II(2t) is simply given by
F1(2t) and the above conditions are expressed as

ad

v
e~a/2!tsinvt5DxB2DxA[

V0

f
, ~4.45!

ad

eaT21
eat1

ad

v
e~a/2!tS vcosvt1

a

2
sinvt D5V0 .

~4.46!

The requirement of symmetryDxn(1`)1Dxn(2`)
52DxS , mentioned in Sec. III become
vBT1(V01vB)T52DxS . This relation and Eq.~4.10! allow
us to expressd5DxA2vBT as,

d5~ f T21!
V0

2 f
. ~4.47!

Finally, we reach to the coupled equations which determ
T andt for a given slopef and sensitivitya

H ~ f T21!e~a/2!tsinvt5
2v

a
,

~eaT21!F S f2 a

2D sinvt2vcosvtG5ve~a/2!t,

~4.48!

FIG. 5. Sensitivity dependence ofT and t for the single slope
function model. The condition,T>t, is assumed, which is satisfie
for a<0.988 57 . . . . Thedotted line shows thea-T relation for the
step function model.
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FIG. 6. Thin curves show ‘‘limit cycles’’ for the single slope function model obtained from simulations with~a! a51.8, ~b! a51.5, ~c!
a51.0, and ~d! a50.9. Trajectories generated fromF1(t) for tP@2T,0# are drawn with thick curves. The curves inside region
(1,Dx,3) are parts of asymptotic trajectories. The dotted line shows the OV function withf51.0,V052.0, andDxS52.0.
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wherev is given in Eq.~4.26!. For f51.0, Eq. ~4.48! is
solved numerically to give thea dependence ofT andt as
shown in Fig. 5. Since we usedF1(t) for F

II (t), Eq.~4.48! is
valid only for t<T (t coincides with T when
a50.988 57 . . . att5T51.740 27 . . . ).

We observe in Fig. 5 thatT behaves as 1/a for small a:
this implies that, for congested flows to be formed, the de
T must be larger for less sensitive drivers. In the limit
f→`, the present model reduces to the step function mo
in which aT5r andt50. This may be confirmed with Eq
~4.48! since aT reaches a constant,r51.593 62 . . . , and
at behaves like 2a/( fr) whena/ f goes to zero~note that
Eq. ~4.48! may be rewritten in terms of rescaled variabl
aT, at, anda/ f ).

In order to see the validity of our approach, let us co
pare our results and trajectories obtained by simulations
Fig. 6, thick curves show parts of the asymptotic trajector
to be determined by the functionF1(t), for a51.8, 1.5
(t.T), a51.0 (t;T), anda50.9 (t,T). These curves are
to be compared with numerical simulations shown as t
y
f
l,

-
In
s,

n

curves. The functionF1(t) is enough to give an asymptoti
trajectory fora<0.988 57 . . . , asmentioned above. It is ex
pected that whena gets closer to its critical value
(acritical52 f52.0, in this case!, we need functionsFk(t)
with a higherk to form an entire trajectory.

There again appears a flat trajectory in region III. As
the step function model, it takes timeT for a vehicle to move
on the flat trajectory and there is only one vehicle travel
on this interval.

C. Double slope function model

The OV function for the single slope model has flat r
gions I and III, like the step function model. For those r
gions the Rondo equation does not depend onF(t1T): a
vehicle does not react to the motion of the preceding o
This motivates us to consider a more realistic model with
OV function which has a nonzero gradient for any headw

The OV function has a slopef 1 in regions I and III, and
f 2 in region II ~see Fig. 7!
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V~Dx!5H f 1Dx Dx<DxA ~region I!

f 2@Dx2~12k!DxA# DxA<Dx<DxB ~region II!

f 1@Dx1~k2121!~DxB2DxA!# DxB<Dx ~region III!.

~4.49!
is
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where k5 f 1 / f 2. Obviously this function is symmetric
around „DxS ,V(DxS)…, whereDxS is the middle point of
region II. Here we should note that the sensitivitya must
satisfy f 1,a/2, f 2 for a generation of the congestion in th
model, since the homogeneous flow is expected to be
early unstable only in region II.

As in Sec. IV B, we assume that the headway reac
DxB at t52t andDxA at t50. The solution of the Rondo
equation~3.4! must satisfy the conditions~4.12!, ~4.13!. The
Rondo functionF(t) for three regions will be denoted a
follows;

F~ t !5H F I~ t ! ~0<t !

F II~ t ! ~2t<t<0!

F III ~ t ! ~ t<2t!.

~4.50!

For F I(t) (t>0), the Rondo equation is given by

D1F
I~ t !5F I~ t1T!1vBT, ~4.51!

where

D15
1

a f1

d2

dt2
1

1

f 1

d

dt
11. ~4.52!

To find a solution to the homogeneous equat
D1Fhom

I (t)5Fhom
I (t1T), we use the ansatzFhom

I (t);egt

which gives an equation for the exponentg,

g2

a
1g5 f 1~e

gT21!. ~4.53!

As long as the conditionf 1,1/T holds ~when a congested
flow is realized in this model, this condition is satisfied triv
ally!, there are two real solutions: the negative2g in and the
positive one gout. Because of the asymptotic behavio
Ḟ(t)→vC as t→1`, only the exponent2g in is relevant to
the functionF I(t). Adding a particular solution of Eq.~4.51!,
we obtain the solution subject to conditions~4.12! and
F(0)50 as

F I~ t !5vCt1~DxA2DxC!
12e2g int

12e2g inT
. ~4.54!

By calculatingDxn(t) and ẋn(t) from Eq. ~4.54!,

Dxn~ t !5DxC1~DxA2DxC!e2g int, ~4.55!

ẋn~ t !5vC1~DxA2DxC!
g in

12e2g inT
e2g int, ~4.56!

we obtain a linear trajectory given by
n-

s

ẋn~ t !2vC5
g in

12e2g inT
@Dxn~ t !2DxC#. ~4.57!

In region II the functionF II(t) is divided intoFk(t)’s for
tPI k5@2kT,2(k21)T# as was done in Sec. IV B. We
may now study the Rondo equation,

D2Fk~ t !5Fk21~ t1T!1vBT2~12k!DxA~k>1!,
~4.58!

whereF0(t)[F I(t) andD2 is D1 with f 1 replaced byf 2:
D25D12(12k)(D121). In terms ofD2, Eq. ~4.51! be-
comes

D2F0~ t !5F0~ t1T!1vBT2~12k!Dxn~ t !, ~4.59!

whereDxn(t) is given by Eq.~4.55!.
The basic technique in Sec. IV B may be used to so

Eq. ~4.58! with a slight modification. Let us defineGk(t)’s
with Fk11(t)5F̃k(t)1Gk11(t1kT), which satisfy the equa-
tions

D2Gk11~ t !5Gk~ t ! ~k>1!, ~4.60!

D2G1~ t !5d~e2g int21![G0~ t !, ~4.61!

whered5(12k)(DxA2DxC). The boundary conditions ar
Gk(0)5Ġk(0)50 for k>1. In solving these, we may us
again the formula given in Appendix B. Once we find th
series ofGk(t), we obtain the functionF

II(t) by the relation
~4.38!. Further we can determine the time2t by the condi-
tion ~4.13!, F(2t1T)2F II(2t)1vBT5DxB .

FIG. 7. The OV function for the double slope function mode
which is symmetric with respect to the point„DxS ,V(DxS)…. It has
the gradientf 1( f 2) in regions I and III~II !.
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In region III (t<2t), the Rondo equation takes the for

D1F
III ~ t !5FX~ t1T!1vBT1~k2121!~DxB2DxA!,

~4.62!

where FX(t1T) is F II(t1T) for 2t<t1T<2t1T and
F III (t1T) for t1T<2t. The solution must be continuousl
connected toF II(t) including the first derivative att52t.
Equation ~4.62! can be solved by the same manner as
region II, though homogeneous solutions to Eq.~4.62! in-
clude the hyperbolic functions instead of the trigonome
functions.

The logic at the end of Sec. III may be used to get a be
perspective on what we have discussed up to now, and it
lead us to find thea dependence ofT. First, with a given
slope T21, we draw a straight line through pointS. The
value of2vB and the coordinates ofC andF are given in
terms ofT and the parameters in the OV function,

vC5
f 1T

12 f 1T
vB , DxC5

vBT
12 f 1T

, ~4.63!

vF5
f 1vBT1 f 1~k2121!~DxB2DxA!

12 f 1T
,

DxF5
vBT1 f 1T~k2121!~DxB2DxA!

12 f 1T
, ~4.64!

and

2vB5S f 12 f 2T11

2T DDxA1
f 2T21

2T
DxB . ~4.65!

In solving the Rondo equation, we have introduced a
rametert determined by Eq.~4.13!. Using this t and vB
expressed as Eq.~4.65!, we obtain a one-parameter family o
the (a-dependent! solution to the Rondo equation. Then, w
find an appropriate value ofa for a givenT by the require-
ment that the asymptotic trajectory connectsC and F:
Ḟ III (2`)5vF .

In Fig. 8, we show trajectories from our analytic stu
and a computer simulation for the double slope model.
have chosen a particular value fora so thatt5T and we
used the Rondo function fort.2t2T to draw the part of
the decelerating asymptotic trajectory. Clearly the Ron
function reproduces the trajectory obtained via a compu
simulation.

By the procedure described in this subsection, we m
easily obtain the remaining part of the asymptotic trajecto
When this is carried out, we expect that it reaches to po
F in the infinite past. In the following we will give anothe
argument to support this expectation. The Rondo equa
for t,2t2T in region III may be solved with exponentia
functions plus a particular solution, as for region I: the fun
tion F III (t) is the sum of a term linear int and exponential
functions. In the limitt→2`, only the linear term survives
expressing that vehicles have the velocity for a free reg
vF ; the exponents satisfy Eq.~4.53! and have positive rea
parts so that exponential functions vanish ast→2`.

It would be appropriate to explain how solutions to E
~4.53! are distributed on the complexg plane. Without going
n

c

r
ill

-

e

o
r

y
.
t

n

-

n

.

into the details, here we only quote features relevant to
arguments. There is only one solution with a negative r
part, it is actually a real solution2g in . Other solutions have
positive real parts, which are relevant whent;2`. There is
only one real solution,gout; there are complex pair solution
with their real parts larger thangout. Since gout has the
smallest positive real part, it dominates among exponen
functions whent→2`. Thus for very large negativet, the
function F III (t) may be approximated by the exponent
functions withgout. In region I, we found that the decele
ating asymptotic trajectory is linear on theDx-v plane owing
to the exponential term inF I(t). Similarly, the approximated
F III (t) defines a line on theDx-v plane, starting pointF as
shown in Fig. 8. We observe that this line is actually t
tangent line to the trajectory at pointF.

The absence of the flat region is directly related to o
observation that pointF is reached only in the infinite past. I
we consider the limit to have a flat regionf 150, we only
have a negative solutiong in52a. When we would like to
consider the OV model applied for a realistic situation, t
relevant OV function may be approximately realized by
piecewise linear function. Since it is unlikely that the fun
tion has a flat region, the above feature of the double sl
model must be generic.

V. TRAJECTORIES AROUND CUSPS

In Sec. IV, we discussed asymptotic trajectories in mod
with piecewise linear OV functions. The asymptotic traje
tories can be realized only when the number of vehicles
comes infinite. In computer simulations in Refs.@1–3#, a
finite number of vehicles run around a circuit; a vehicle go
through all the free and congested regions in a finite tim
The Rondo equation probably has solutions even for s
situations. Though we have not worked out how to obt
entire trajectories for such vehicles, we are able to disc

FIG. 8. Trajectories for the double slope model. Thin cur
shows ‘‘limit cycle’’ from simulation with a51.131 24 when
T5t51.583 31. The analytical solution is drawn with a thic
curve. The dotted-dashed line shows the trajectory expressed b
exponential function with indexgout . The dotted line shows the OV
function with f 150.25,f 251.0,DxA51.0, andDxB53.0.
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parts of the trajectories around pointsC or F. We are going
to discuss this subject in this section.

To make our explanation concrete, we take a traject
around the end pointC. In a congested region, all the ve
hicles have almost the same velocity. When a vehicle
about to reach a congested region, its velocity would
slightly different fromvC and the functionF(t) may be writ-
ten asF(t)5vCt1j(t). We take a linear approximation fo
an OV functionV(Dx) ~here as an OV function we have i
mind a smooth, but not necessarily a piecewise linear, fu
tion! around the point (DxC ,vC),

V~Dx!. f C~Dx2DxC!1vC . ~5.1!

Since (vB1vC)T5DxC , the Rondo equation~3.4! becomes
a linear difference-differential equation forj(t),

j̈~ t !

a
1 j̇~ t !5 f C@j~ t1T!2j~ t !#. ~5.2!

For the ansatzj(t)5egt, we find an equation for the expo
nentg,

g2

a
1g5 f C~egT21!. ~5.3!

As long asf C,1/T, there are two real solutions: the neg
tive, 2g in , and the positive one,gout ~we ignored complex
solutions in this approximation since the real part of tho
solutions are larger thangout. See the discussion in Sec. VI!.

Trajectories considered here cross~at t50) the OV func-
tion at points slightly different fromC: we denote their co-
ordinates by (Dx,v)5(DxC1dv/ f C ,vC1dv). We find the
solution forF(t) as,

F~ t !5vCt1
2gout

2 e2g int1g in
2egoutt

g ingout~g in1gout!
dv. ~5.4!

We may findDxn(t) andvn(t) from this solution

FIG. 9. A trajectory in linear approximation for a vehicle pas
ing through the congested region with a finite size. It has two
ymptotes, accelerating and decelerating asymptotic trajectories.
time development is indicated with arrows.
y

is
e

c-

e

Dxn~ t !5DxC1
~a2g in!goute

2g int1~a1gout!g ine
goutt

a~g in1gout!

dv
f C

,

~5.5!

vn~ t !5vC1
goute

2g int1g ine
goutt

g in1gout
dv. ~5.6!

By eliminating the timet, we find the equation for the tra
jectory around pointC

Fa fC~Dx2DxC!2~a2g in!~v2vC!

g indv
Gg in

3F ~a1gout!~v2vC!2a fC~Dx2DxC!

goutdv
Ggout

51.

~5.7!

This curve, shown in Fig. 9, has two asymptotes throughC
with slopesa fC /(a2g in) anda fC /(a1gout), which corre-
spond to the decelerating and accelerating asymptotic tra
tories, respectively.

Two asymptotes of Eq.~5.7! divide theDx-v plane into
four areas. In Fig. 10, curves are shown for solutions to
~5.2! with various initial conditions: pointC is a saddle
point. The linear analysis applies to pointF as well, so
curves in the left-lower region would describe the behav
of vehicles close to a free region.

The condition,@v(t)2vC#/vC!1, helps us to evaluate
tC , the time interval a vehicle would spend around po
C;

t2!
2

g ingout

vC
dv

;tC
2 . ~5.8!

The time tC is related to the length of a congested regi
LC and the number of vehicles in this regionNC as follows:

NC5
tC
T
, LC5NCDxC5DxC

tC
T
. ~5.9!

Therefore the size of a congested region is larger for sma
dv.

-
he

FIG. 10. The flow diagram around pointC obtained by the
linear approximation. Two asymptotes are asymptotic trajectori
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VI. SUMMARY AND DISCUSSION

We have investigated the repetitive pattern formation
served in a computer simulation from an analytical point
view. The Rondo approach was proposed to describe
repetitive pattern. In addition toa and V(Dx), the
difference-differential equation for the Rondo functionF(t)
contains two macroscopic parameters,T and vB , which
specify the motion of a global pattern. In this paper w
mainly paid attention to the Rondo functions for asympto
trajectories. The Rondo equation was solved for three sim
models with piecewise linear OV functions. In order to d
termine thea dependence ofT and vB , we gave analytic
expressions for Rondo functions. We would like to emph
size that the concept of asymptotic trajectory plays a key
in determining thea dependence ofT andvB . As a first step
to understand more realistic situations, we have studied s
trajectories around cusps.

Our asymptotic trajectories were compared with clos
trajectories obtained via simulations. Except for some det
around cusps, the agreement is quite good. Our work is
the first one where the comparison was made between s
lations and analytic results. In Ref.@14#, Nagatani proposed a
stochastic cellular automaton model for which the closed
jectory was analytically obtained with a mean field metho
The analytic result recovers the simulations qualitatively
a certain range of acceleration in his model.

In the following we discuss four questions related to t
Rondo approach:~1! a description of a homogeneous flow
~2! an extension to OV models with asymmetric OV fun
tions; ~3! more on realistic trajectories; and~4! a possibility
to find the Rondo functionforward in time.

It would be appropriate to mention how a homogeneo
flow may be described in the Rondo approach. A homo
neous flow is described by the solution to the Rondo eq

tion, Ḟ(t)5v05const, whereT andvB are chosen to satisfy
the relation,v05V@(v01vB)T#. The trajectory of the flow is
represented by a single point on the OV function. We kn
that the instability of this trajectory to a small perturbati
gives us a congested flow. The stability analysis of
asymptotic trajectory might help us to understand the na
of this pattern formation.

Studying more realistic models, we may encounter
asymmetric OV function. We explain how our procedu
developed in this paper, may be extended to such situati
Even with an asymmetric OV function, we may define t
concept of accelerating and decelerating asymptotic traje
ries. When the symmetry is absent, accelerating and dec
ating asymptotic trajectories are not related to each other
must be found independently. The condition that both
them share the same end pointsC andF will determine the
a dependence ofT.

Even though we have mainly studied asymptotic trajec
ries, the Rondo equation itself must be applicable for a
repetitive motion of vehicles. On the other hand, as we h
observed for piecewise linear models, the difference betw
asymptotic trajectories and the results of computer sim
tions are very small. Therefore, whether we would like
obtain a realistic trajectory out of the Rondo approach or
very much depends on our purpose.
-
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The Rondo equation gives us a functional relation wh
may be written as,

F~ t1T!5P@F~ t !,Ḟ~ t !,F̈~ t !;a,vB ,T#, ~6.1!

with three parametersa, vB , and T. When we know the
function F(t) for the time intervaltP@ t0 ,t01T#, there are
two ways to use the above equation:~1! substituting this on
the right-hand side, we findF(t) for tP@ t01T,t012T#; ~2!
the same information may be used on the left-hand side
have a differential equation forF(t) on the interval t
P@ t02T,t0#. Although the former sounds much easier, w
have been able to use the Rondo equation only in the la
manner. Here we will explain why.

Now let us consider, for concrete, a decelerati
asymptotic trajectory in the double slope model. In order
use Eq.~6.1! in approach~1!, we need the Rondo function
describing a part of the asymptotic trajectory coming out
F; the rest of the asymptotic trajectory may be obtained j
by differentiating the initial function repeatedly. So the in
tial Rondo function is of vital importance.

Since the OV function is symmetric, the transcenden
equation~4.53! may be used to find the initial Rondo func
tion. Let us remember how solutions are distributed. Th
are only two real solutions,2g in,0 andgout.0, and infi-
nitely many complex solutions whose real parts are lar
thangout. The initial Rondo function is a linear combinatio
of infinitely many exponential functions with Re(g).0.
Therefore, it contains infinitely many coefficients, whic
must be determined to give an asymptotic trajectory w
properties described in Sec. III. To find an asymptotic traj
tory in this way, we probably need some new techniques

In this paper we have considered the repetitive pattern
traffic flow. Such a repetitive structure is also observed
various phenomena, and we believe that our approach
be helpful to understand them.

APPENDIX A: ASYMPTOTIC TRAJECTORY IS
SYMMETRIC

In this paper we have used the following property of
asymptotic trajectory: (DxC ,vC) and (DxF ,vF) are at sym-
metric positions for OV function symmetric around a poi
S. Here we would like to give a proof of the above claim f
an OV function symmetric with respect to the pointS.

Suppose an OV-function function and a sensitivity a
given. Our Rondo equation contains two parametersT and
vB

1

a
F̈~ t !1Ḟ~ t !5V@F~ t1T!2F~ t !1vBT#. ~A1!

If we could find a solutionF(t) for the equation, this mean
that, for the OV function and the sensitivitya, a correspond-
ing pattern with the delayT and the backward velocityvB
may be realized.

The OV function is taken to be an odd function arou
the pointS(DxS ,vS). This assumption is expressed with a
odd functionW(2x)52W(x) as follows:

V~Dx!5vS1W~Dx2DxS!. ~A2!
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By putting this form to the Rondo equation, it now look
like,

1

a
F̈~ t !1Ḟ~ t !5vS1W@F~ t1T!2F~ t !1vBT2DxS#.

~A3!

We assume that a solution to the Rondo equation has b
found. It gives a trajectory on theDx-v plane, whose coor-
dinate we denote as„Dx1(t),v1(t)…. They are expressed wit
the functionF(t) as follows:

v1~ t !5Ḟ~ t !, Dx1~ t !5F~ t1T!2F~ t !1vBT. ~A4!

By using the fact thatW is odd, it is easily shown tha
„Dx2(t),v2(t)…, given below, satisfies the Rondo equation
well.

v2~ t !5 Ḟ̄~ t !, Dx2~ t !5F̄~ t1T!2F̄~ t !1v8BT, ~A5!

where F̄(t)[2vSt2F(t) and v8BT[22vST2vBT
12DxS .

It is also easy to see that„Dx1(t),v1(t)… and
„Dx2(t),v2(t)… are symmetric with respect to pointS. There-
fore, if the former defines a trajectory from a free to a co
gested region, the latter defines that for the opposite di
tion.

Here we emphasize that two trajectories have differ
backward velocities but with the same delay timeT. In com-
puter simulations, we observe that a pattern of a conge
flow is characterized with two parametersT and vB ; both
regions, connecting free to congested or congested to
move with the same backward velocityvB . So two trajecto-
ries connecting free and congested regions must have
same parameters. This must be also true for an asymp
trajectory. Thereforev8B must be equal tovB itself. This
implies that the two trajectories discussed above form
closed trajectory. Thus we may conclude the following:~1!
solutions expressed byF(t) and F̄(t) satisfy the Rondo
equation with the same parametersT and vB ; ~2! the two
points on the OV function connected by trajectories are sy
metric with respect to pointS; and ~3! the straight line
through the two points includes the pointS.

APPENDIX B: GENERAL FORMULA
FOR STEP-BY-STEP METHOD

In the following we will give a general formula for th
second order linear differential equation:

S 1a f d
2

dt2
1
1

f

d

dt
11DGk~ t !5Gk21~ t !

Gk~0!50, Ġk~0!50 ~k>1!, ~B1!

S 1a f d
2

dt2
1
1

f

d

dt
11DG0~ t !5G0~ t !

G0~0!50, Ġ0~0!52ad . ~B2!
en
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The solution for Eq.~B2! is

G0~ t !5d~e2at21!. ~B3!

In terms of the functiongk(u) defined as follows:

Gk11~ t !5Gk~ t !1
ad

v S a fv2D ke2~a/2!tgk~vt ! ~k>0!,

~B4!

the initial conditions att50 are expressed as

gk~0!50, gk8~0!50, ~k>1!

g0~0!50, g08~0!51. ~B5!

From Eqs.~B1!, ~B2!, andv25a f2a2/4, the equation to
determinegk(u) is

gk9~u!1gk~u!5gk21~u! ~k>1!

g09~u!1g0~u!50. ~B6!

The initial value problem with Eqs.~B5! and ~B6! may be
solved with the spherical Bessel functionsj k(u) as

gk~u!5
1

2kk!
uk11 j k~u!. ~B7!

We give functions fork50, 1, 2, 3 explicitly.

g0~u!5sinu,

g1~u!5 1
2 ~sinu2ucosu!,

g2~u!5 1
8 ~3sinu23ucosu2u2sinu!,

g3~u!5 1
48 ~15sinu215ucosu26u2sinu1u3cosu!.

~B8!

In this paper, we also use another series of soluti
hk(t) of Eqs.~B6! with the initial condition

hk~0!50, hk8~0!50, ~k>1!

h0~0!51, h08~0!50. ~B9!

It is easily shown thathk(u) is given by

hk~u!5gk8~u![
u

2k
gk21~u!, ~B10!

where the second equality is valid only fork>1. We also
give hk(u) for k50, 1, 2, 3 explicitly.

h0~u!5cosu,

h1~u!5 1
2usinu,

h2~u!5 1
8 ~usinu2u2cosu!,

h3~u!5 1
48 ~3usinu23u2cosu2u3sinu!. ~B11!
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